Tune Around!
SEARCH

CQ-Calling All Hams!
About Hamuniverse
Antenna Design
Antenna Safety!
Ask Elmer

About Batteries
Code Practice
Computer Help
Electronics
FCC Information
Ham Hints 
Humor
Ham Radio News!
Post Reviews 
Product Reviews
Ham Radio Videos!
HF & Shortwave

License Study
Links
Midi Music
Reading Room
Repeater Basics
Repeater Builders
RFI Tips and Tricks
Ham Satellites
Shortwave Listening
SSTV
Support The Site
STORE
Vhf and Up
Contact
Site Map
Privacy Policy
Legal Stuff

Advertising Info





ANTENNAS AND WAVE PROPAGATION

This page introduces you to a downloadable
 U.S. NAVY
TRAINING COURSE Titled 
"Antennas and Wave Propagation"

Chapters include:
1. Wave Propagation
2. Antennas
3. Introduction to Transmission and Waveguides

This is an official U.S. Navy training course that will help you understand Wave Propagation, Antennas, Transmission, and Waveguides.

~~~~~~~~~~~~~~~~~~~~~~~~~
Introduction 

The eyes and ears of a ship or shore radio station depend on sophisticated, highly computerized electronic systems. The one thing all of these systems have in common is that they lead to and from antennas. Ship’s operators who must communicate, navigate, and be ready to fight the ship 24 hours a day depend on you to keep these emitters and sensors operational.
 
While radio waves traveling in free space have little outside influence to affect them, radio waves traveling in the earth’s atmosphere have many influences that affect them. We have all experienced problems with radio waves, caused by certain atmospheric conditions complicating what at first seemed to be a relatively simple electronic problem. These problem-causing conditions result from a lack of uniformity in the earth’s atmosphere.

In this volume, we will review wave propagation, antenna characteristics, shore-based and shipboard communications antennas, matching networks, antenna tuning, radar antennas, antenna safety, transmission lines, connector installation and weatherproofing, waveguides, and waveguide couplings. When you have completed this chapter, you should be able to discuss the basic principles of wave propagation and the atmosphere’s effects on wave propagation.

Many factors can affect atmospheric conditions, either positively or negatively. Three of these are variations in geographic height, differences in geographic location, and changes in time (day, night, season, year).

To understand wave propagation, you must have at least a basic understanding of the earth’s atmosphere. The earth’s atmosphere is divided into three separate regions, or layers. They are the troposphere, the stratosphere, and the ionosphere. These layers are illustrated in figure 1-1.

TROPOSPHERE

Almost all weather phenomena take place in thetroposphere. The temperature in this region decreasesrapidly with altitude. Clouds form, and there may be a lotof turbulence because of variations in the temperature,pressure, and density. These conditions have a profound effect on the propagation of radio waves, as we will explain later in this chapter.

STRATOSPHERE

The stratosphere is located between the troposphere and the ionosphere. The temperature throughout this region is almost constant and there is little water vapor present. Because it is a relatively calm region with little or no temperature change, the stratosphere has almost no effect on radio waves.

IONOSPHERE

This is the most important region of the earth’s atmosphere for long distance, point-to-point communi-cations. Because the existence of the ionosphere is directly related to radiation emitted from the sun, the movement of the earth about the sun or changes in the sun’s activity will result in variations in the ionosphere. These variations are of two general types:

(1) those that more or less occur in cycles and, therefore, can be predicted with reasonable accuracy; and (2) those that are irregular as a result of abnormal behavior of the sun and, therefore, cannot be predicted. Both regular and irregular variations have important effects on radio-wave propagation. Since irregular variations cannot be predicted, we will concentrate on regular variations.

Regular Variations

The regular variations can be divided into four main classes: daily, 27-day, seasonal, and 11-year. We will concentrate our discussion on daily variations, since they have the greatest effect on your job. Daily variations in the ionosphere produce four cloud-like layers of electrically-charged gas atoms called ions, which enable radio waves to be propagated great distances around the earth. Ions are formed by a process called ionization. 

To continue with your study..... Download the entire 98 page document in PDF form here! Long download! You will need Adobe Reader! 7.11MB file size

 




 


 


  


Hamuniverse.com uses Green Geeks Web Hosting!